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Abstract

We develop a probabilistic modeling framework for multiwayarrays. Our frame-
work exploits the link between graphical models and tensor factorization models
and it can realize any arbitrary tensor factorization structure, besides many pop-
ular models such as CP or TUCKER models with Euclidean error and for non-
negativity with KL error. The probabilistic framework enables us to develop a
model selection methodology based on variational Bayes.

1 The Model : Probabilistic Latent Tensor Factorization (PLTF)

We propose a unifying framework for full Bayesian inferencein which any arbitrary tensor factor-
ization structure for Euclidean and KL costs can be realized. By making use of the duality between
exponential families and Bregman divergences, here we casttheTensor Factorizationproblem as in-
ference problem in the probabilisticGraphical Modelswith Gaussian or Poisson components. This
way the tensor factorisation reduces to a parameter estimation problem. The associated inference
algorithms can be derived automatically via message passing using matrix computation primitives
and the model can be selected via a variational bound on the marginal likelihood [2, 1]. For this
purpose, we introduce a notation for tensor factorization models that closely resembles undirected
probabilistic graphical models [2, 9].

Probabilistic Latent Tensor Factorization is introduced first, in the LVA/ICA Conference, held in
France on 27-30th September 2010 [10]. Apart from that introduction, for NIPS 2010 TF work-
shop we include model priors as hyperparameters as well as model order determination and model
selection as a natural extension to PLTF.

1.1 Notation

Following the established jargon, we call a K-way arrayX ∈ X I1×I2×···×IK simply a ’tensor’.
Here,Ik are finite index sets, whereik is the corresponding index. We denote an element of the
tensorX(i1, i2, . . . , iK) ∈ X asXi1,i2,...,iK . Similarly, given the index setW = {i1, . . . , iK}
we use the notationX(w) to denote an element ofXi1,i2,...,iK . We associate with each TF model
an undirected graph, where each vertex corresponds to an index. We letV be the set of vertices
V = {v1, . . . vα, . . . , vN}. Our objective is to estimate a set of tensorsZ = {Zα|α = 1 . . . N} such
that

minimizeD(X||X̂) s.t. X̂(w) =
∑

w̄∈W̄

∏

α

Zα(vα) (1)

where the functionD is a divergence. EachZα is associated with an index setVα such thatV =
∪αVα. Two distinct setsVα andVα′ can have nonempty intersection but they don’t contain each
other. We define a set of ’visible’ indicesW ⊆ V and ’invisible’ indicesW̄ ⊆ V such thatW∪W̄ =
V andW ∩ W̄ = ∅.
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Example 1 For V = {i, j, k, p, q, r}, W = {i, j, k}, V1 = {i, p}, V2 = {j, q}, V3 = {k, r} and
V4 = {p, q, r} (core tensor) TUCKER3 model is

X̂i,j,k =
∑

p,q,r

Zi,p
1 Zj,q

2 Zk,r
3 Zp,q,r

4 (2)

ForPLTF , we write the following generative model.

Λ(v) =

N
∏

α

Zα(vα) model paramaters to estimate (3)

S(w, w̄) ∼ PO(S; Λ(v)) element of latent tensor forPLTFKL (4)

S(w, w̄) ∼ N (S; Λ(v), 1) element of latent tensor forPLTFEU (5)

X(w) =
∑

w̄∈W̄

S(w, w̄) (6)

M(w) =

{

0 X(w) is missing
1 otherwise mask array (7)

Here,N () andPO() denote the Gaussian and the Poisson distributions.Λ is the intensity field and
S is the latent source usingΛ as the parameter andX is augmented from the source. Here note that
W ∪ W̄ = ∪αVα = V and for their instantiations(w, w̄) = ∪αvα = v. The Poisson distribution
implies non negativity and also the model can deal naturallywith the missing data [8, 3] .

1.2 PLTFKL: Factorization Model for KL Error

Given this model, we optimize the log marginal likelihoodp(X|Θ1:N ) for Zα using the EM that
leads to the following fixed point update equation forZα

Zα(vα)← Zα(vα)

∑

v 6∈Vα
M(w)X(w)

X̂(w)

∏

α′ 6=α Zα′(vα′)
∑

v 6∈Vα
M(w)

∏

α′ 6=α Zα′(vα′)
(8)

whereX̂(w) is the model estimate given as

X̂(w) =
∑

w̄∈W̄

∏

α

Zα(vα) (9)

Example 2 (CP update equation)The multiplicative update rule for CP (shortly for CANDE-
COMP/PARAFAC) [6] is generated byPLTFKL with the settingN = 3, V = {i, j, k, r},
W = {i, j, k}, V1 = {i, r}, V2 = {j, r} and V3 = {k, r}. The fixed point equation forZ1

is

Zi,r
1 ← Zi,r

1

∑

j,k(M
i,j,kXi,j,k/X̂i,j,k)Zj,r

2 Zk,r
3

∑

j,kM
i,j,kZj,r

2 Zk,r
3

(10)

1.3 Model Priors

After taking account the gamma model priors the fixed point update equation turns in to the follow-
ing. One obvious use of the priors is that we can control the sparseness of the model.

Zα(vα) ∼ G(Zα;Aα(vα), Bα(vα)/Aα(vα)) (11)

Zα(vα)←
(Aα(vα)− 1) + Zα(vα)

∑

v 6∈Vα
M(w)X(w)

X̂(w)

∏

α′ 6=α Zα′(vα′)

Aα(vα)
Bα(vα) +

∑

v 6∈Vα
M(w)

∏

α′ 6=α Zα′(vα′)
(12)

1.4 Message Passing

We note that the update equation consists of structurally similar terms in both the denominator
and the numerator. To exploit this we define the following thetensor valued function as∆α(X) :
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R
|X| → R

|Zα|

∆α(X) ≡





∑

v 6∈Vα



X(w)
∏

α′ 6=α

Zα′(vα′)







 (13)

∆α(X) is an object the same size ofZα while∆α(X)(vα) refers to a particular element of∆α(X).

There are two benefits of using the∆ function notation. First, algebraically the∆ is equivalent to
the computation of marginal potentials for the cliques in the Graphical Models, hence to compute
∆ function one can use methods such asvariable eliminationor junction tree. The second benefit
is that∆ function allows as to write element-wise fixed point update rule with tensor as compact as
follows

Zα ← Zα ◦
∆α(M ◦X/X̂)

∆α(M)
(14)

where◦ and/ stand for element wise multiplication and division respectively. We also see that this
equation can even turn into a matrix form and to be able to solve ALS equations.

1.5 PLTFEU : Factorization Model for Euclidean Error

For Euclidean error the derivation of fixed point update equation is similar to that of KL divergence
that we merely replace the Poisson likelihood with that of a Gaussian

∂LEU

∂Zα(vα)
=

∑

v 6∈Vα

M(w)





(

X(w)− X̂(w)
)

∏

α′ 6=α

Zα′(vα′)





= ∆α(M ◦X)−∆α(M ◦ X̂) = 0 (15)

The solution of this equation leads to two related but different iterative schemata:Multiplicative
Update Rules(MUR) andAlternating Least Squares(ALS). First, when we use gradient ascent we
obtain MUR forPLTFEU similar to [7] as

Zα ← Zα ◦∆α(M ◦X)/∆α(M ◦ X̂) (16)

Second, we can solve it directly that allows us to obtain ALS for PLTFEU

∆α(M ◦X) = ∆α(M ◦ X̂) (17)

Note thatX̂ depends onZα. If there is no missing data (M(w) = 1 for all w), the result is available
in closed form.

1.6 Matricization

Any element wise equation can be converted into the matrix form. We call this operation as ’ma-
tricization’. Note thatMatricization is originally defined in [5, 6] as the operation of convertinga
multiway array into a matrix by reordering the column fibers.In this paper we refer to this definition
as ’unfolding’. For matricization we use Einstein’s summation convention where repeated indices
are added over with some adaptations such as ’faster index last’ convention for unfolding operations
and definition for Khati-Rao product.

Example 3 (Derivation of matrix form update rules for the TUCKER3 decomposition) We
compute first the prediction in matrix form

X̂i,j,k =
∑

pqr

Gp,q,rAi,pBj,qCk,r (18)

(X̂(1))
kj
i = (G(1))

rq
p A

p
iB

q
jC

r
k =

(

(AG(1))((C ⊗B)T )
)kj

i
(19)

X̂(1) = AG(1)(C ⊗B)T (20)

Now,∆Zα
for all α can also be represented in matrix form. The functions∆A and∆G are

∆A(X) ≡ (X(1))
kj
i B

q
jC

r
kG

rq
p ≡ X(1)(C ⊗B)GT

(1) (21)

∆G(X) ≡ (X(1))
kj
i A

p
iB

q
jC

r
k ≡ A

TX(1)(C ⊗B) (22)
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• if KL ((14)) we evaluate∆α(Q) and∆α(M) whereQ =M ◦ (X/X̂)

A← A ◦
Q(1)(C ⊗B)GT

(1)

M(1)(C ⊗B)GT
(1)

G(1) ← G(1) ◦
(ATQ(1))(C ⊗B)

(ATM(1))(C ⊗B)
(23)

• if EUC-ALS. We solve∆α(X) = ∆α(X̂) (17)when there are no missing observations, i.e.,
M(w) = 1 for all w. We show only the updates for the core tensorG. The pseudo-inverse
ofA is denoted byA†. From (22)we have

ATX(1)(C ⊗B) = AT
(

AG(1)(C ⊗B)T
)

(C ⊗B) (24)

G(1) ← A†X(1)

(

(C ⊗B)T
)†

(25)

2 Model Selection for Tensors

We developed an model selection framework forPLTFKL, that is for the non negative tensor
factorization models although it can be extended for other error measures as well. We note that
selecting the right generative model among many alternatives can be a difficult task. For example,
given the observationXi,j,k one can propose CP generative model asX̂i,j,k =

∑

r Z
i,r
1 Zj,r

2 Zk,r
3 ,

or a TUCKER3 modelX̂i,j,k =
∑

p,q,r Z
i,p
1 Zj,q

2 Zk,r
3 Zp,q,r

4 or some arbitrary model aŝXi,j,k =
∑

p,q Z
i,p
1 Zj,p

2 Zk,q
3 Zp,q

4 . Our model selection framework can be user both model order determina-
tion and model selection. Our selection method is based on getting a model score by lower bounding
the log marginal likelihood by variational Bayes. The Bayesian approach offers an elegant solution
based on computing marginal likelihoodp(X|Θ), where latent variables and the parameters are
integrated out as the exact computation is intractable [4, 2].

2.1 Variational Methods for PLTFKL

Variational fixed point update equation forZα(vα) is, then, as follows

〈Zα(vα)〉 =
Aα(vα) + Lα(vα)

∑

v 6∈Vα
M(w) X(w)

X̂L(w)

∏

α′ 6=α Lα′(vα′))

Aα(vα)
Bα(vα) +

∑

v 6∈Vα
M(w)

∏

α′ 6=αEα′(vα′)
(26)

where

Eα(vα) = 〈Zα(vα)〉 = Cα(vα)Dα(vα) (27)

Lα(vα) = exp(〈logZα(vα)〉) = exp(ψ(Cα(vα)))Dα(vα) ψ is the digamma fn (28)

X̂E(w) =
∑

w̄∈W̄

∏

α

Eα(vα) (29)

X̂L(w) =
∑

w̄∈W̄

∏

α

Lα(vα) (30)

We come up with the following variational lower bound for thelog marginal likelihood of the
PLTFKL models as

L(X|Θ) ≥ B =
∑

w∈W

−X̂E(w)− log Γ(X(w) + 1) +X(w) log X̂E(w) (31)

−KL[G(C,D)||G(A,B/A)] (32)

where KL term can become
∑

α

∑

vα∈Vα
log(Cα(vα)) asymptotically making theVB bound ap-

proaches to BIC score [1].
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